Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0620920180500010014
Experimental & Molecular Medicine
2018 Volume.50 No. 1 p.14 ~ p.14
PIK3R3 regulates PPAR¥á expression to stimulate fatty acid ¥â-oxidation and decrease hepatosteatosis
Yang Xi

Fu Yinjia
Hu Fuqing
Luo Xuelai
Hu Junbo
Wang Guihua
Abstract
Phosphatidylinositol 3-kinase (PI3K) signaling plays an important role in the regulation of cellular lipid metabolism and non-alcoholic fatty liver disease (NAFLD). However, little is known about the role of the regulatory subunits of PI3K in lipid metabolism and NAFLD. In this study, we characterized the functional role of PIK3R3 in fasting-induced hepatic lipid metabolism. In this study, we showed that the overexpression of PIK3R3 promoted hepatic fatty acid oxidation via PIK3R3-induced expression of PPAR¥á, thus improving the fatty liver phenotype in high-fat diet (HFD)-induced mice. By contrast, hepatic PIK3R3 knockout in normal mice led to increased hepatic TG levels. Our study also showed that PIK3R3-induced expression of PPAR¥á was dependent on HNF4¥á. The novel PIK3R3-HNF4¥á-PPAR¥á signaling axis plays a significant role in hepatic lipid metabolism. As the activation of PIK3R3 decreased hepatosteatosis, PIK3R3 can be considered a promising novel target for developing NAFLD and metabolic syndrome therapies.
KEYWORD
Mechanisms of disease, Non-alcoholic fatty liver disease
FullTexts / Linksout information
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø